Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation

نویسندگان

  • Connor T. Skennerton
  • Lewis M. Ward
  • Alice Michel
  • Kyle Metcalfe
  • Chanel Valiente
  • Sean Mullin
  • Ken Y. Chan
  • Viviana Gradinaru
  • Victoria J. Orphan
چکیده

Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x-12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncultured Archaea in a hydrothermal microbial assemblage: phylogenetic diversity and characterization of a genome fragment from a euryarchaeote.

The polychaete Alvinella pompejana lives in organic tubes on the walls of active hydrothermal chimneys along the East Pacific Rise. To examine the diversity of the archaeal community associated with the polychaete tubes, we constructed libraries by direct PCR amplification and cloning of 16S rRNA genes. Almost half of the sequences of the 16S rRNA gene libraries clustered with uncultured archae...

متن کامل

Adaptations to Hydrothermal Vent Life in Kiwa tyleri, a New Species of Yeti Crab from the East Scotia Ridge, Antarctica

Hydrothermal vents in the Southern Ocean are the physiologically most isolated chemosynthetic environments known. Here, we describe Kiwa tyleri sp. nov., the first species of yeti crab known from the Southern Ocean. Kiwa tyleri belongs to the family Kiwaidae and is the visually dominant macrofauna of two known vent sites situated on the northern and southern segments of the East Scotia Ridge (E...

متن کامل

Physiological and Genomic Features of a Novel Sulfur-Oxidizing Gammaproteobacterium Belonging to a Previously Uncultivated Symbiotic Lineage Isolated from a Hydrothermal Vent

Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemoli...

متن کامل

Metazoans in extreme environments: adaptations of hydrothermal vent and hydrocarbon seep fauna.

Some of the most extreme environments where animals survive are associated with active vents and seeps in the deep sea. In addition to the extreme pressure, low temperatures, and lack of light that characterize the deep sea in general, a variety of other factors that are hostile to most animals prevail in these environments. Hydrothermal vent regions show extremes in temperature, areas of very ...

متن کامل

Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment

Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015